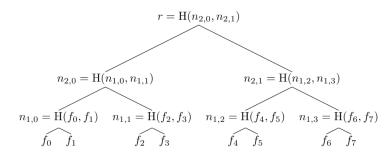


They sign, we prove — Hash-Based Multi-Signatures in Post Quantum Settings.

Advisor: Fabian Schmid


Motivation

A multi-signature scheme allows many parties to sign messages individually and for their signatures to be compactly aggregatable. As a prominent example, these multisignatures are used in the block validation procedure of Ethereum. Similar to many cryptographic protocols, the existing schemes are threatened by adversaries with sufficiently powerful quantum computers. Recently, there was a proposal to instantiate such a multi-signature with the help of the hash-based signature scheme XMSS and a modern zero-knowledge proof system.

Within this topic, there is a little bit of everything. With hashes, there are fundamental cryptographic primitives; with XMSS, we have a post-quantum signature scheme, and with zero-knowledge proofs, we have cutting-edge privacy technologies.

Goals and Tasks

- Study the XMSS signature scheme and selected arithmetization-oriented hash functions.
- 📒 Understand how classical signatures can be made aggregatable using zero-knowledge proofs.
- X Implement parts of the XMSS scheme in a proof system framework.

The eXtended Merkle Signature Scheme (XMSS).

Literature

- > J. Drake et al. Hash-based multi-signatures for postquantum ethereum Cryptology ePrint Archive 2025
- > A. Huelsing et al. XMSS: eXtended Merkle Signature Scheme 2018 doi:10.17487/RFC8391

Courses & Deliverables

- Introduction to Scientific Working Short report on background Short presentation
- **☑** Bachelor Project Project code and documentation
- **☑** Bachelor's Thesis Project code Thesis Final presentation

Recommended if you're studying

☑ CS ☑ICE ☑ SEM

Prerequisites

> Interest cryptography and privacy, motivation to implement modern protocols.

Advisor Contact

fabian.schmid@tugraz.at