

Verifiable Leap with Zero-Knowledge Proofs

Advisor: Lena Heimberger heimberger.xyz/supervision.html

Motivation

The OPRF Leap is currently among the fastest OPRFs in the world. While the construction is very simple, a few attacks can result in malicious users or servers leaking information they should not have. The objective of the thesis is to integrate a modern zero-knowledge proof system (such as STARKs, but you are free to explore others) with the Leap protocol. You will design and implement a protocol extension that makes Leap's operations verifiable without revealing any secret information. This project has direct applications in privacy-preserving authentication and other systems where trustless verification is critical.

In your thesis, you will

- > Study a specific lattice attack.
- > Analyze its applicability to Leap.
- Implement your own approximation script for small-moduli LWR cryptography.

Goals and Tasks

- Understand a specific lattice attack and its constraints.
- Understand Leap.
- Implement the attack and verify existing implementations.

Literature

- M. R. Albrecht et al.
 Estimate All the {LWE, NTRU} Schemes!
 SCN 2018
 doi:10.1007/978-3-319-98113-0_19
- A. Banerjee et al.
 SPRING: Fast Pseudorandom Functions from Rounded Ring Products
 FSE 2014
 doi:10.1007/978-3-662-46706-0_3
- L. Heimberger et al.
 Leap: A Fast, Lattice-Based OPRF with Application to Private Set Intersection EUROCRYPT 2025 doi:10.1007/978-3-031-91098-2_10

Courses & Deliverables

✓ Master's Thesis Initial presentation Project code Thesis (60+ pages) Final presentation

Recommended if you're studying

☑CS ☑ICE ☑SEM

Prerequisites

> I am on leave until the 3rd of November. Please read the note on supervision on heimberger.xyz/supervision.html.

Advisor Contact

lena.heimberger@tugraz.at

MASTER'S THESIS CRYPTOLOGY & PRIVACY