

Efficient Hardware Implementation of the Gaussian Elimination

Advisor: Maciej Czuprynko

Motivation

The emergence of a powerful quantum computer threatens the security of current digital signature schemes. To prepare for this, the National Institute of Standards and Technology (NIST) initiated a call for post-quantum digital signature schemes. Among the promising candidates, several of them use the Gaussian elimination algorithm as a subroutine. For instance, in the signature scheme LESS, it is used to obtain a row reduced representation. It is also used in MAYO and UOV in order to solve a system of equations. The Gaussian elimination is an expensive operation and thus takes up a significant part of the run time, if not the most. As such, any improvement in this function leads to a similar improvements in the overall execution time.

This project thus aims to investigate hardware-specific optimizations which can be used to develop high-performance and/or low-area implementations of the Gaussian elimination.

Goals and Tasks

- Get familiar with the existing implementations of the Gaussian reduction.
- X Implement optimizations for efficient hardware acceleration of the subroutine.
- Compare your results to other PQ signature hardware accelerators.

Literature

- Gaussian elimination https://en.wikipedia.org/wiki/Gaussian_ elimination
- > L. Beckwith et al.

A High-Performance Hardware Implementation of the LESS Digital Signature Scheme

Post-Quantum Cryptography

Courses & Deliverables

☑ Master Project

Project code Report Presentation

- OR -

✓ Master's Thesis

Initial presentation Project code Thesis (60+ pages) Final presentation

Recommended if you're studying

☑ CS ☑ICE ☑SEM

Prerequisites

- Interest in hardware design
- > Knowledge of Verilog, Python and C/C++
- > "Crypto on Hardware" course is recommended

Advisor Contact

maciej.czuprynko@tugraz.at