

Efficient Implementation of the CORDIC Algorithm on FPGAs

Advisor: Florian Krieger

Motivation

Homomorphic encryption (HE) raises huge attention since it offers superior privacy. However, HE still has a significant performance drawback. One reason for this drawback is the involved Fast Fourier Transformation and its complex number arithmetic in \mathbb{C} which is costly in hardware and software implementations.

The CORDIC algorithm is a compelling alternative to compute the FFT. Therefore, we aim to efficiently implement the CORDIC algorithm and to integrate the design in the open-source Aloha-HE project.

Goals and Tasks

Some specific goals of this project are:

- > Investigate the CORDIC algorithm and its hardware implementaiton aspects.
- > Implement CORDIC on resource-constrained FPGAs.
- > Find efficient energy or power trade-offs
- > Implement side-channel countermeasures + experimental evaluation
- 📒 Investigate the CORDIC algorithm and its hardware implementaiton aspects.
- 🔀 Implement and optimize CORDIC for resource-constrained FPGAs.
- 💢 Integrate your design into Aloha-HE.
- Compare your results to related works

Literature

> J. E. Volder The CORDIC Trigonometric Computing Technique, in IRE TEC, 1959 doi:10.1109/TEC.1959.5222693

> F. Krieger et al. Aloha-HE: A Low-Area Hardware Accelerator for Client-Side Operations in Homomorphic Encryption **DATE 2024** doi:10.23919/DATE58400.2024.10546608

Courses & Deliverables

✓ Master Project

Project code Report Presentation

- OR -

✓ Master's Thesis

Initial presentation Project code Thesis (60+ pages) Final presentation

Recommended if you're studying

™CS **™**ICE **™**SEM

Prerequisites

- Interest in efficient hardware design
- > Cryptography on Hardware Platforms course is highly recommended

Advisor Contact

florian.krieger@tugraz.at