

Matrices in Hermite Normal Form for memory constrained devices

Advisor: Anisha Mukherjee

Motivation

The rise of quantum computers threatens the security of currently deployed cryptographic primitives such as digital signatures. To address this, NIST initiated a call for postquantum signatures, leading to the proposal of a number of new schemes. One such candidate is called SQIsign which has the smallest signature sizes. However, the SOIsign implementation currently demands a large RAM, making microcontroller deployment challenging.

The aim of this thesis will be to investigate memory optimisation that can be introduced for the scheme, but with a focus on only one particular algorithm: the computation of the Hermite Normal Form. Essentially, given any matrix, the algorithm returns a upper triangular one that preserves some properties of the input matrix. This computation leads to large blow ups in the size of the elements, and thus a large memory consumption. As such, it is an interesting starting point for memory optimization.

Goals and Tasks

- Explore the algorithm that computes the Hermite Normal Form.
- Investigate possible optimization to reduce the memory
- X Implement the algorithm.

Literature

Hermitian normal form implementa-

https://github.com/SQISign/the-sqisign/ blob/main/src/quaternion/ref/generic/ hnf/hnf.c

Courses & Deliverables

✓ Master Project

Project code Report Presentation

– OR –

✓ Master's Thesis

Initial presentation Project code Thesis (60+ pages) Final presentation

Recommended if you're studying

MICE MSEM **™**CS

Prerequisites

- > Interest in Post Quantum Cryptography
- > Knowledge of Python and C/C++
- > "Crypto on Software" course is recommended

Advisor Contact

anisha.mukherjee@tugraz.at